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We examine the flow of a supersonic stream in an annular duct. In 
approximation of the hydrodynamic analogy we have given consider- 
ation to both friction and heat transfer. A generalequation is presented, 
as are the solutions for several special cases. 

The p r o b l e m  of the flow of a v i scous  gas  with heat  
t r a n s f e r  in a duct of v a r i a b l e  c r o s s  sec t ion  (involving 
the use of a bas ic  r e l a t ionsh ip  [ = 8Sn f rom the hydro-  
dynamic  theo ry  of heat  t r ans f e r )  has  been solved in 
q u a d r a t u r e s  in r e f e r e n c e s  [1-3] .  

It has  been demons t r a t ed  e x p e r i m e n t a l l y  in r e f e r -  
ence [4] that  the above- ind ica t ed  r e l a t ionsh ip  between 
the in tens i ty  of heat  t r a n s f e r  and the hydrodynamic  r e -  
s i s t ance  is  d i s rup ted  on t r ans i t ion  through the speed  of 
sound. However ,  beginning f rom Mach number  va lues  
of M ~ 1.48, we can r e g a r d  the use of this  r e l a t ionsh ip  
as  p e r m i s s i b l e  within the a c c u r a c y  of engineer ing  
p r a c t i c e .  

The unique f ea tu re  of the solut ion obtained in r e f -  
e rence  [3] l i e s  in the fact  that  i t  r educes  to the d e t e r -  
minat ion of the function q~(M), c h a r a c t e r i z i n g  the de-  
via t ion of the flow f rom the ideal .  

Here ,  as  in [3], i t  i s  a s s u m e d  that  the sum Ikll + 
+ Ikzl of the absolu te  va lues  of the s lopes  for  the gen-  
e r a t r i c e s  of the ins ide  and outs ide  duct s u r f a c e s  is  
f a i r l y  sma l l .  The s t a g n a t i o n - t e m p e r a t u r e  r e c o v e r y  
fac tor  in the boundary  l a y e r  is  a s s u m e d  to be equal to 1. 

F r o m  the equation of mot ion 

1 d(M2T) 1 d p  2 ~ M,z l , 
(1) 

T d~ yp2 d~ 2 1 + K ~  

f rom the cont inui ty  equation 

M2P---~2 (1 + K ~)~(Z + L ~)2 = const (2) 
T 

and f rom the energy  equation (using the r e l a t ionsh ip  
= 8Sn), we obtain 

(M 2 - -  1) dM 2 

( 1 _ o ) _  =I1+~ 
• d In (1 + K ~)~ + d In (Z + L ~)*. (3) 

The quantity 0 can be r e g a r d e d  as  app rox ima te ly  con- 
s tant ,  if the wall  t e m p e r a t u r e  is  cons tant ,  and if the 
s tagnat ion t e m p e r a t u r e  changes  only s l igh t ly  [3]. It i s  
not diff icult  to d e m o n s t r a t e  that Eq. (3) r educes  to an 
Able equation of the f i r s t  kind [5]. 

Because  the solut ion of th is  equation i s  c u m b e r s o m e  
and, consequent ly ,  because  of the unavoidable  diff i -  
cu l t i es  in the p r a c t i c a l  appl ica t ion  of this  solut ion,  le t  
us dwell on s e v e r a l  spec ia l  c a s e s .  

1. An annular  duct with a constant  c r o s s - s e c t i o n a l  
a r e a ,  i . e . ,  k t = k2 = 0; Y01 ~ 0. 

Equation (3) a s s u m e s  the fo rm 

(M~--I)dM~ = ~--[1--O--(1-~-O)yM~ld~. 
M ~ { l + Y 2 1 M , )  4 

(4) 

The solut ion of this  equation fol lows:  

where  

(P2 

1+~---12 M2) [ 1 - O - ( I + O ) ~ M ~ ]  

rPt= (14_, ~_~Mo2)  [ I _ _ 0 _ _ ( I + 0 )  VM2] ; 

( I + O ) y M 4 - - [  ( 1 - 0 )  2 y ( I + O )  I M 2 y - - 1  2(1--0)y__1 

~'(1 +0 )  M 4 o - - i 1 - - 0 - -  2y(1y__l-l-0) lMo2 2(1y__1--0); 

Y t ~  
3 ( 1 - - 0 ) - - 7 ( 1 + 3 0 )  . 

2 ( v - 1 )  + v(1 +0) 
1 - - 0  

1 
m =  _ w _  

2(1 - -0)  

When Y01 = 0 and 0 = 1, we obtain a spec ia l  ca se  of flow 
in an insu la ted  tube of constant  c r o s s  sec t ion  [6]. 

2. An annular  duct of v a r i a b l e  c r o s s  sect ion with 
g e n e r a t r i x  s lopes  equal in va r ious  d i r ec t ions :  k I < 0; 
k 2 > 0; Ikll = Ik21 = k. In th is  case  K = 2k and L = 0  
and the solut ion to Eq. (3) has  the fo rm 

q_(M)) ~ ( M ) -  1 
q (M0) 1 + 2k 

Here  q(M) is  the r e f e r e n c e  dens i ty  of the m a s s  flow, 
and the value  of ~o(M) is  the s ame  as  in [3]. 

3. An a x i s y m m e t r i c  nozzle  without a een te rbody  [3]. 
In th is  c a s e ,  k 1 = 0; Y01 = 0. 

4. A plane nozzle  of inf ini te  width.  The height of the 
in le t  sec t ion  is  denoted by Y01, and ~ = x/y0. In the  
s ame  way as  above,  we can de r ive  the equation 

(M ~ - -  1) dM 2 

M z\/1 + Y-2 1M2) I[ 



JOURNAL OF ENGINEERING PHYSICS 191 

=['+yZ 
whose solution is 

q (M) , ,, 1 

where ~(M) has the same form as in [3], with the ex- 
ception of k = K/2.  

By calcula t ing the Mach number  M at any c ros s  
sect ion of the nozzle,  we can de te rmine  all of the r e -  
main ing  flow p a r a m e t e r s  in a manne r  analogous with 
that of [3]. 

NOTATION 

M is the Maeh number ;  T is the t empe ra tu r e ;  T1 
is the wall t empe ra tu r e ;  ~ is the fr ic t ion factor;  Sn 
is the Stanton number ;  q(M) is  the reduced densi ty  of 
mass  flow; k 1 and kz a re  the slopes of the inner  and 
outer  su r faces ;  Y01 and Y02 a re  the radi i  in the inlet  

sect ion;  x is  the absc i s sa  d i rec ted  along the nozzle 
axis ; 

x 
Y0 = Y02--Y0z; K = k , . - -kz;  L = k ~  kz; ~ ~ y-~ ; 

2//0 Tz 
Z = l - ~ - ~ 0  ; O-- T(1 + --~- 7-- 1M~')', 
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