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We examine the flow of a supersonic stream in an anaular duct. In
approximation of the hydrodynamic analogy we have given consider-
ation to both friction and heat transfer. A generalequation is presented,
as are the solutions for several special cases.

The problem of the flow of a viscous gas with heat
transfer in a duct of variable cross section (involving
the use of a basic relationship ¢ = 8Sn from the hydro-
dynamic theory of heat transfer) has been solved in
quadratures in references {1—3].

It has been demonstrated experimentally in refer-
ence [4] that the above-indicated relationship between
the intensity of heat transfer and the hydrodynamic re-
sistance is disrupted on transition through the speed of
sound. However, beginning from Mach number values
of M~ 1.48, we can regard the use of this relationship
as permissible within the accuracy of engineering
practice.

The unique feature of the solution obtained in ref-
erence [3] lies in the fact that it reduces to the deter-
mination of the function ¢(M), characterizing the de-
viation of the flow from the ideal.

Here, as in [3], it is assumed that the sum |k;] +
+ |ks| of the absolute values of the slopes for the gen-
eratrices of the inside and outside duct surfaces is
fairly small. The stagnation-temperature recovery
factor in the boundary layer is assumed to be equaltol.

From the equation of motion
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from the continuity equation
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and from the energy equation (using the relationship
¢ = 8Sn), we obtain
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The quantity 6 can be regarded as approximately con-
stant, if the wall temperature is constant, and if the
stagnation temperature changes only slightly [3]. It is
not difficult to demonstrate that Eq. (3) reduces to an
Able equation of the first kind [5].

Because the solution of this equation is cumbersome
and, consequently, because of the unavoidable diffi-
culties in the practical application of this solution, let
us dwell on several special cases.

1. An annular duct with a constant cross-sectional
area, i.e., ky =ky = 0; yo; = 0.

Equation (3) assumes the form
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The solution of this equation follows:
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When yp; = 0 and 6§ =1, we obtain aspecial case of flow
in an insulated tube of constant cross section [6].

2. An annular duct of variable cross section with
generatrix slopes equal in various directions: k; < 0;
ky > 0; |ky| = |ky| =k, In this case K =2k and L =.0
and the solution to Eq. (38) has the form
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Here q{M) is the reference density of the mass flow,
and the value of ¢(M) is the same as in [3].

3. An axisymmetric nozzle without a centerbody [3].
In this case, k; = 0; yp = 0.

4. A plane nozzle of infinite width. The height of the
inlet section is denoted by yg, and £ = x/y,. In the
same way as above, we can derive the equation
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whose solution is

where ¢(M) has the same form as in [3], with the ex-
ception of k = K/2.

By calculating the Mach number M at any cross
section of the nozzle, we can determine all of the re-
maining flow parameters in a manner analogous with
that of [3].

NOTATION

M is the Mach number; T is the temperature; Ty
is the wall temperature; ¢ is the friction factor; Sn
is the Stanton number; q(M) is the reduced density of
mass flow; ky and k; are the slopes of the inner and
outer surfaces; yy and yp are the radii in the inlet
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section; x is the abscissa directed along the nozzle
axis;

x
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